概述

ZL6205 是广州致远微电子有限公司设计的一款 500mA 低压差线性稳压器,具有良好的线性调整率与负载动态响应特性。

ZL6205 具有极低的关断电流和静态功耗,特别适用于 2.3V 至 6.5V 的供电设备。ZL6205 的初始输出电压精度为±1%。当输出电流 500mA 时, ZL6205 典型压差为 240mV。ZL6205 内置快速放电电路,当输入电压掉电到设定值时,内部快速放电电路开启使输出快速放电。ZL6205 应用于低噪声应用时可外接旁路电容来降低输出噪声。

ZL6205 具有欠压保护、过流保护、短路保护和过温保护等保护功能。

ZL6205 采用 TSOT23-5 封装,外围仅需要极少元件,减少了所需电路板的空间和元件成本。

·产品应用

- ◆ 单片机、MCU 供电
- ◆ 电池供电设备
- ◆ 消费电子

产品特性

- ◆ 500mA 最大输出电流;
- ◆ 低压差(典型值为 240mV@lo=500mA);
- ◆ 可与陶瓷输出电容配合使用;
- ◆ 必要时外部 10nF 旁路电容,用于低噪声;
- ◆ 快速启动;
- ◆ 具有快速放电功能;
- ◆ 静态电流典型值 50µA;
- ◆ 初始电压精度±1.0%;
- ◆ 欠压保护;
- ◆ 过流保护:
- ◆ 短路保护;
- ◆ 过温保护;
- ◆ TSOT23-5 封装;
- ZL6205 具有欠压保护、过流保护、短 ◆ 不含铅、卤素和 BFR,符合 RoHS 标准。

·订购信息

型号	温度范围	封装
ZL6205AXXTS5	-40 ℃~+85 ℃	TSOT23-5

注: ZL6205AXXTS5 产品型号中的 XX 表示不同的输出电压版本。

产品图片

修订历史

版本	日期	原因	
0.9.00	2018/09/02	创建文档	
1.0.00	2019/09/27	发布文档	
1.0.01	2020/03/26	增加新型号、包装信息和湿敏等级	
1.0.02	2020/04/21	修改输入电压欠压阈值	
1.0.03	2020/05/08	修改输入电压范围及与其有关的参数	
1.0.04	2020/06/08	增加地电流温度特性曲线,输出电压温度特性曲线	
1.0.05	2020/12/17	更新 Logo 模板	
1.0.06	2021/01/28	修改欠电压标称方式	
1.0.07	2022/02/14	修改静态电流参数	

目 录

1.	订购信息	.	1
2.	特性参数		2
	2.1	管脚信息	2
	2.2	绝对最大额定值	2
	2.3	推荐工作条件	
	2.4	电气特性	3
	2.5	典型特征参数	4
	2.6	瞬态特性	5
	2.7	功能描述	
3.	应用说明		8
	3.1	输入电容	8
	3.2	输出电容	8
	3.3	PCB 布局	8
	3.4	设计实例	
4.	封装尺寸	-	9

1. 订购信息

ZL6205 的完整产品型号信息见表 1.1 所示。

表 1.1 产品型号信息

产品型号	输出电压(V) ^[注]	顶层丝印	封装类型	颗/盘	湿敏等级
ZL6205A18TS5	1.8	AAXX	TSOT23-5	3000	MSL-3
ZL6205A30TS5	3.0	AMXX	TSOT23-5	3000	MSL-3
ZL6205A33TS5	3.3	APXX	TSOT23-5	3000	MSL-3

注: 其他输出电压可接受芯片定制。

ZL6205产品型号一共由12个字母和数字组成,其型号信息代表的含义如图1.1所示。

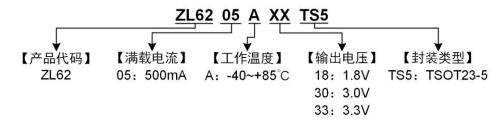


图 1.1 产品型号信息

ZL6205产品丝印由 4 个字母和数字组成, 其丝印如图 1.2 所示。

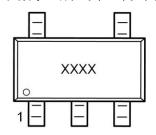


图 1.2 产品丝印图

ZL6205产品丝印代表的含义如图 1.3 所示。

图 1.3 丝印信息

2. 特性参数

2.1 管脚信息

ZL6205产品的管脚信息如图 2.1 所示,采用标准的 TSOT23-5 封装。

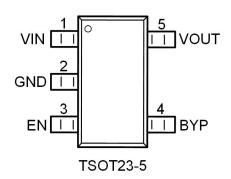


图 2.1 管脚信息

如表 2.1 所示是 ZL6205 各管脚的详细功能描述。

表 2.1 管脚描述

管脚编号	名称	描述	
1	VIN	电源输入端, VIN 引脚与芯片地之间需要靠近芯片接一个不小于 10μF 陶瓷电	
1	VIIN	容(建议 10μF~100μF)。工作输入电压范围为 2.3V 至 6.5V。	
2	GND	芯片接地端,该引脚必须连接到 PCB 的地。	
2	EM	使能引脚,芯片使能控制,高电平有效。内部有一个 3.0MΩ 的下拉电阻,可	
3 EN		确保 EN 引脚在开路时,电路被禁用。	
4	DVD	旁路引脚,该引脚可悬空,但 BYP 引脚和芯片地之间接一个 10nF 陶瓷电容,	
4 BYP		可降低输出噪声并提高高频时的 PSRR。	
5 VOUT		电压输出端, VOUT 引脚和芯片地之间需要接一个 1μF 的陶瓷电容, 为了获	
		得更好的瞬态响应,其值可以增加到 10μF,输出电容应靠近器件。	

2.2 绝对最大额定值

如表 2.1 所示是 ZL6205 芯片的绝对最大额定参数,该参数为芯片的最大应力等级,并 非芯片推荐的工作条件。

表 2.2 芯片绝对最大额定参数 (注)

参数	值	单位
$V_{ m IN}$	0~7V	V
V _{EN} , V _{OUT}	-0.3~V _{IN} +0.3	V
结温 T _J	+125	$^{\circ}$ C
耗散功率 PD	530 (注1)	mW
存储温度 Ts	-65~+150	$^{\circ}$ C
焊接温度(焊接 5s)	260	$^{\circ}\mathrm{C}$
ESD 等级(人体模型)	4	KV

V

 $^{\circ}$ C

°C/W

注:超过最大额定值的应力可能会损坏设备。如果器件长时间处于高于推荐工作条件,可能会影响器件的可靠性。

2.3 推荐工作条件

 V_{EN}

结温范围 T_J

封装热阻 θJA

如表 2.3 所示是 ZL6205 推荐长时间正常工作时的参数范围。

参数 范围 ^(注2) 单位 V_{IN} 2.3~6.5 V

表 2.3 建议工作条件

 $0 \sim V_{IN}$

-40~+125

235

注 1: 530 mW 是在环境温度(T_A)为 $25 ^{\circ} \text{C}$ 条件下测得的极限耗散功率(P_{Dmax}),其他环境温度(T_A)下允许最大耗散功率由 $P_{Dmax}=(T_{Jmax}-T_A)/\theta_{JA}$ 决定,超过极限功率耗散将导致芯片温度过高,稳压器可能进入热关断状态。

注 2: 不保证器件在其额定运行范围之外能正常工作。

2.4 电气特性

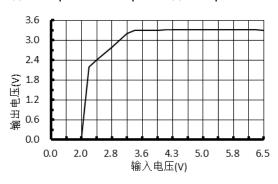
如表 2.4 是 ZL6205 的电气特性表,默认测试条件为 $V_{IN}=V_{OUT}+1.0V$ 、 $V_{EN}=High$ 、 $I_{OUT}=100\mu A$ 、 $C_{IN}=10\mu F$ 、 $C_{OUT}=2.2\mu F$ 、 $T_A=25$ \mathbb{C} ,除非特别说明 $^{(\pm_3)}$ 。

表 2.4 电气特性

符号	参数	测试条件	最小值	典型值	最大值	单位
Vout-acc	初始输出电压 精度		-1.0		+1.0	%
Voe	输出电压	I _{OUT} =500mA	0.98×V _{OT}	$V_{\text{OT}}^{\ ^{({\scriptstyle \stackrel{\scriptstyle \succeq}{\scriptscriptstyle}} 4)}}$	1.02×V _{OT}	V
$V_{\text{R-LINE}}$	线性调整率	$V_{IN}=V_{OUT}+1.0V\sim5.5V$	0	0.2	0.4	%
V _{R-LOAD}	负载调整率	$I_{OUT}=100\mu A\sim 500mA$		1	1.5	%
$V_{\rm UVLO}$	欠压关断阈值			2.15		V
I _{OUT_MAX}	最大输出电流			500		mA
Iocp	过流保护电流	I _{OUT} from 0 to 1.1A		1000		mA
I _{SD}	关断电流	V _{EN} <0.4V		<10	100	nA
I _{SS}	静态电流	I _{OUT} =0		50	60	μΑ
Isc	短路电流	V _{OUT} =0V		200		mA
3.7	V _{DROP} 压差 ^(注5)	I _{OUT} =500mA			250	mV
V_{DROP}	压左	I _{OUT} =300mA			150	
DCDD	公立中有生山人	f=1kHZ, C _{BYP} =10nF		53.6		ID
PSRR	纹波抑制比	f=20kHZ, C _{BYP} =10nF		53.7		dB
Ton	启动时间	C _{BYP} =10nF		130		μs
Rout-sh	关断输出电阻	V _{EN} =0V		240		Ω
R _{EN}	使能下拉电阻	参考 I _{ENH}		3.0		ΜΩ
$V_{ m HI}$	EN 逻辑高电平	V _{IN} =2.25~6.5V	1.8			V
V _{LO}	EN 逻辑低电平	V _{IN} =2.25~6.5V			0.4	V

续上表

符号	参数	测试条件	最小值	典型值	最大值	单位
I_{ENH}	使能输入电流	$V_{EN} = V_{IN}$		1.5	2	μΑ
I _{ENL}	使能输入电流	V _{EN} =0.4V		0.15	0.2	μΑ
T_{SD}	热关断			180		$^{\circ}$
T _{HYS}	热迟滞			21		$^{\circ}$


注3:除非另有说明,电气特性参数为3.3V输出版本。

注4: Vor是规定的输出电压。

注 5: 初始输出电压为 3.3V, 输入电压逐渐减小, 比如输入电压减小到 3.35V, 直到输出电压为 0.98*3.3 此时 $V_{DROP}=3.35-0.98*3.3$ 。

2.5 典型特征参数

如下各图为 ZL6205 (3.3V 输出版本) 典型参数图,默认测试条件为 V_{IN} =4.3V、 V_{EN} = V_{IN} 、 I_{OUT} =100 μ A、 C_{IN} =10 μ F、 C_{OUT} =2.2 μ F、 C_{BYP} =10nF、 T_A =25 $^{\circ}$ C,除非特别说明。

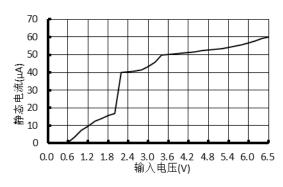


图 2.2 输入输出电压特性

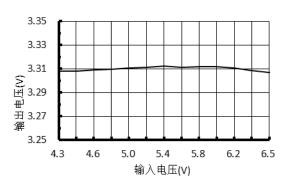


图 2.3 静态电流与输入电压的关系

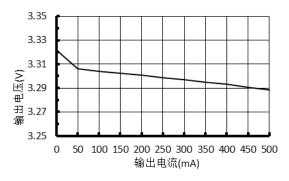
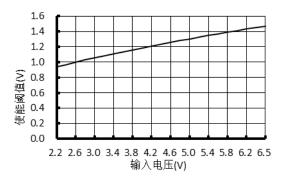
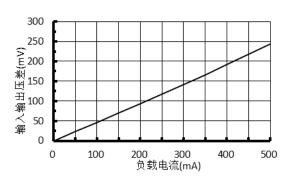



图 2.4 线性调整特性

图 2.5 负载调整特性



2.4 2.0 1.6 2.0 1.2 2.0 0.8 2.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 使能电压(V)

图 2.6 使能电压阈值与输入电压的关系

图 2.7 使能电流与使能电压的关系

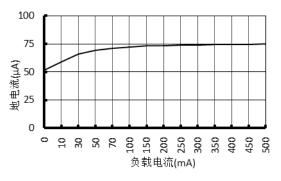
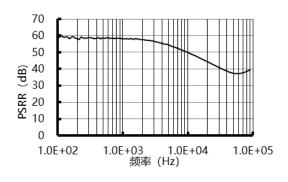



图 2.8 压差与负载电流的关系

图 2.9 地电流与负载电流的关系

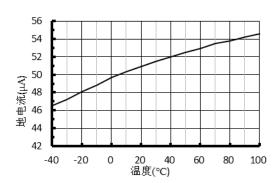


图 2.10 PSRR 与频率的关系(Iout=1mA)

图 2.11 地电流与温度的关系

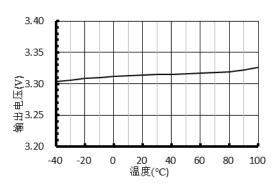


图 2.12 输出电压与温度的关系

2.6 瞬态特性

如下各图为 ZL6205(3.3V 输出版本)的瞬态特性图,默认测试条件为 $V_{IN}=4.3V$ 、

 V_{EN} = V_{IN} 、 I_{OUT} =100μA、 C_{IN} =10μF、 C_{OUT} =2.2μF、 C_{BYP} =10nF、TA=25℃,除非特别说明。

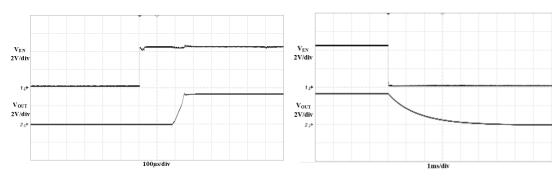


图 2.13 EN 使能启动波形(100 µ A 负载)

图 2.14 EN 禁能关闭波形(100 µ A 负载)

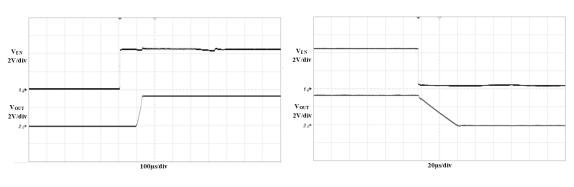


图 2.15 EN 使能启动波形(500mA 负载)

图 2.16 EN 禁能关闭波形(500mA 负载)

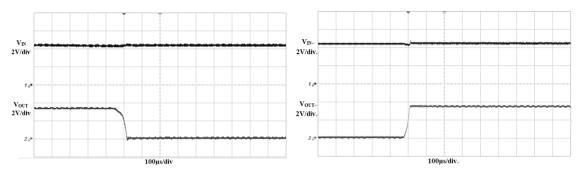


图 2.17 输出短路波形

图 2.18 输出短路恢复波形

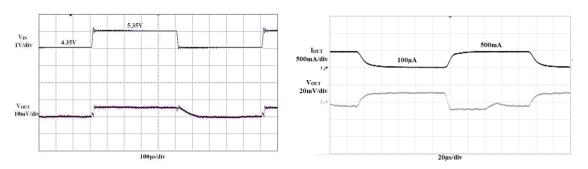


图 2.19 线性瞬态响应波形

图 2.20 负载瞬态响应波形

2.7 功能描述

ZL6205 是一款 500mA 线性稳压器,具有低压差、低静态电流等优点,非常适用于 2.3~6.5V 电池供电设备。ZL6205 提供多种输出电压型号可供选择。其内部框图如图 2.21 所示。

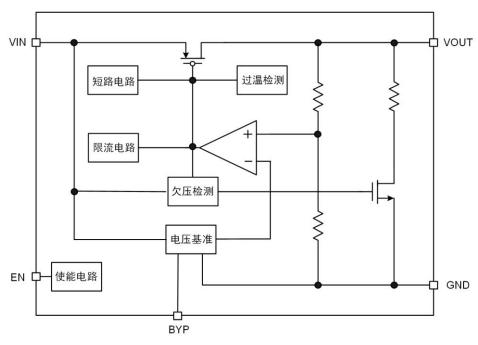


图 2.21 芯片内部框图

当 EN 为低电平时,IC 进入关断模式。在关断模式下,芯片内部电路关闭,电源电流将降至小于 1μ A。当 EN 引脚上拉到高电平,IC 启动。当输入电压及使能电压符合输出关闭条件时,芯片电压输出关闭,同时启动内部快速放电电路,使输出端的电容残存电荷快速放电。此功能可以大大提高被 LDO 供电电子系统的可靠性。

芯片內置欠压保护、过流保护、过温保护和短路保护电路,电源输入电压小于 2.15V (典型值),稳压器内部欠压锁定电路将禁用输出。当芯片输出短路或者输出电流超过过流保护阈值,芯片将进入过流保护状态,限制电流输出。当芯片温度过高时,芯片将过温关断,当温度下降到一定值时,芯片将重新启动。

芯片最大功率耗散取决于外壳与电路板的热阻、芯片表面与环境之间的温差。当负载较 大时,为保证芯片正常工作,建议特别关注散热方案。

3. 应用说明

ZL6205 低压差线性稳压器内置基准电压和反馈分压电阻,用户只需外接输入、输出电容即可使用。

3.1 输入电容

为确保芯片正常工作,靠近芯片的输入电容不小于 $10\,\mu\text{F}$,建议在输入引脚和地之间放置一个电容值介于 $10\,\mu\text{F}\sim100\,\mu\text{F}$ 之间的电容(C_{IN}),推荐使用介质类型为 X5R 或 X7R 陶瓷电容。容值较大的电容有助于改善芯片瞬态响应。

3.2 输出电容

为了使输出电压稳定,在输出引脚和地之间放置一个电容值介于 1μ F 和 10μ F 之间的电容(C_{OUT}),建议使用介质类型为 X5R 或 X7R 的陶瓷电容。容值较大的电容有助于改善负载瞬态响应并降低噪声。不推荐使用其他电介质类型的输出电容器,因为其他的电容高温稳定性较差。

为了降低输出噪声、提高高频时的 PSRR 性能,推荐使用 10nF 的陶瓷电容靠近芯片的 BYP 引脚和 GND 引脚间放置。

3.3 PCB 布局

PCB 布局对于纹波抑制,瞬态响应和散热性能非常重要,好的布局可实现良好的工作状态,建议遵循以下指南并进行 PCB 布局设计:

- 1、建议输入和输出陶瓷电容分别靠近芯片 VIN 引脚和 VOUT 引脚。
- 2、大功率应用时确保芯片背部散热金属与 PCB 覆铜贴紧,以提高散热性能,保证长期稳定、可靠工作。

3.4 设计实例

如图 3.1 是 ZL6205 的典型应用电路图。

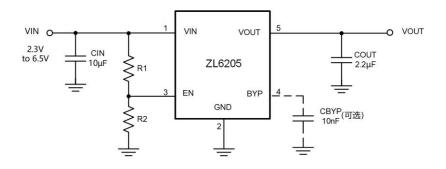
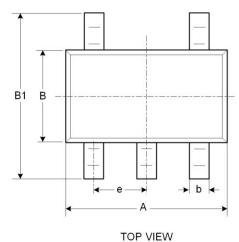
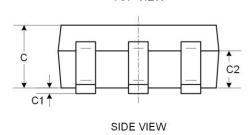



图 3.1 ZL6205 典型应用电路



4. 封装尺寸

ZL6205 采用的是标准的 TSOT23-5 封装, 其封装尺寸说明如图 4.1 所示:

符号	最小值	最大值	
Α	2.82	3.02	
В	1.60	1.70	
B1	2.65	2.95	
b	0.35	0.50	
е	0.95(BSC)		
С	0.70	0.80	
C1	0.00	0.10	
C2	0.378	0.438	
L	0.30	0.60	
θ	0	8	
B2	0.08	0.20	

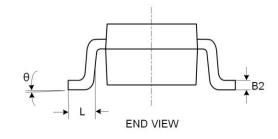


图 4.1 封装尺寸图

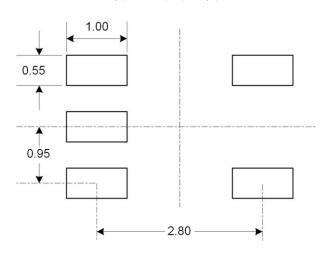


图 4.2 建议 PCB 封装尺寸

注: 所有尺寸均以毫米 (mm) 为单位, 角度以度 (°) 为单位。

5. 免责声明

本着为用户提供更好服务的原则,广州致远微电子有限公司(下称"致远微电子")在本手册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时效性,致远微电子不能完全保证该文档在任何时段的时效性与适用性。致远微电子有权在没有通知的情况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,请尊敬的用户定时访问官方网站或者与致远微电子工作人员联系。感谢您的包容与支持!

