User Manual

AML166-Core Demo Board

ZML166 芯片评估板用户手册

UM01010101 1.0.00 Data:2019/05/18

类别	内容
关键词	ZML166,评估板
摘要	本文介绍AML-Core评估板使用方法

AML166-Core

AML166-Core 开发套件

修订历史

版本	日期	原因
1.0.00	2019/05/18	创建文档

目 录

1.	评估	板简介	
	1.1	评	估板概述2
	1.2	评	估板特性2
	1.3	产	品清单2
2.	评估	板结构]
	2.1	结	构说明3
	2.2	功	能定义4
3.	快速	使用指	南6
	3.1	РТ	[100 热电阻温度测量(demo-1)6
		3.1.1	硬件连接6
		3.1.2	指令操作6
	3.2	热	电偶温度测量(demo-2)7
		3.2.1	硬件连接7
		3.2.2	指令操作7
	3.3	压	力电阻桥测量(demo-3)7
	3.4	LN	M75B 温度测量(demo-4)8
		3.4.1	硬件连接8
		3.4.2	指令操作8
	3.5	按	键与蜂鸣器(demo-5)8
	3.6	24	位 ADC 校准(demo-6)8
		3.6.1	适用条件8
		3.6.2	硬件连接8
		3.6.3	指令操作9
4.	免责	声明	

1. 评估板简介

1.1 评估板概述

AML166-Core 评估板是提供给客户快速上手 ZML166N32A 芯片的硬件平台, ZML166N32A 是一款内置 24 位 ADC 的 Cortex M0 的混合信号微控制器, ZML166N32A 芯 片包含 1 个 24 位的 ADC、一个 12 位 ADC、4 个 16 位通用定时器、1 个 32 位通用定时器、 1 个高级 PWM 定时器,标准的通信接口: 2 个 UART 接口、1 个 I2C 接口和 1 个 SPI 接口。

AML166-Core 评估板上带有快速评估 24 位 ADC 硬件,支持热电阻温度测量,热电偶 温度测量,称重传感器测量等高精度信号采集;还带有一些基本外设,包括 2 个 LED,1 个 按键,1 个蜂鸣器和1 个 IIC 外设;除此之外还有丰富的接口,SWD 调试接口,Miniport 接口和 Microport 接口。AML166-Core 评估板采用 5V 的 MicroUSB 供电,评估板与 PC 通 信需外接 USB 转 TTL 模块。通过此评估板手册用户便能快速上手这款内置 24 位 ADC 的 Cortex M0 的混合信号微控制器。

1.2 评估板特性

供电方式	MicroUSB 接口,采用 5V 电压 MicroUSB 供电。
主控制器	ZML166N32A, 内置 24 位 ADC 的 Cortex M0 的混合信号微控制器
基本外设	LED,板载2个LED灯。
	蜂鸣器,板载1个蜂鸣器。
	IIC 温度传感器,板载1个LM75B 温度传感器。
	多功能按键,板载一个多功能按键,可用于加热电阻加热和按键控制功能。
高级外设	热电阻温度测量,支持单路 PT100 温度传感器测量功能。
	热电偶温度测量,支持单路热电偶温度测量功能。
	称重传感器测量,支持单路称重传感器测量功能。
拓展接口	MicroPort 接口,可外拓 ZLG 带 MicroPort 接口的模块
	MiniPort 接口,微控制器 IO 口全部通过 MiniPort 引出
规格尺寸	84mm*52mm
工作温度	-40°C~+85°C

表 1.1 评估板特性

1.3 产品清单

表 1.2 AML166-Core 评估板套件清单

1	AML166-Core 评估板×1
2	产品合格证×1
3	售后服务指南×1

2. 评估板结构

2.1 结构说明

图 2.2 AML166-Core 评估板实物图

- ➤ 可用 MicroUSB 供电;
- ➢ SWD 调试接口;
- ▶ 1个标准的 MiniPort 接口;
- ▶ 1 个标准的 MicroPort 接口;
- ▶ 1个电源指示灯,2个供用户程序使用的LED灯;
- ▶ 1个无源蜂鸣器;
- ▶ 支持单路 PT100 温度传感器测量
- ▶ 支持单路热电偶温度测量
- ▶ 支持单路称重传感器测量
- ▶ 1个LM75B测温芯片;
- ▶ 1个多功能独立按键,可用于加热电阻或应用程序的独立按键;
- ▶ 1个 AML166-Core 评估板的复位按键;
- ▶ 1个用于进入固件升级模式的按键 BOOT0。

ZLG 致远微电子

AML166-Core

AML166-Core 开发套件

2.2 功能定义

AML166-Core 评估板上一些接口、按键、LED、排针、排母的作用说明。

表 2.3 接口, 排母与排针描述

位号	功能说明			
J1	MicroUSB 接口,接 5V 给评估板供电(无通信功能)			
J2	2.54mm 间距 1×5 弯排针, SWD 调试接口, 提供给用户二次开发自己的应用			
J3	5.08mm 间距 1×2 绿色端子, 热电偶测量接口, 外接热电偶温度传感器, TC+ 为正端, TC-为负端			
J4	2.54mm 间距 2×10 弯排针, MiniPort 接口,引出微控制器全部 IO 口			
J5	2.54mm 间距 1×3 直排针,热电偶热电阻功能选择,热电阻测量短接 A13 与 RTA,热电偶测量短接 A13 与 TCA			
J12	2.54mm 间距 1×3 直排针, 热电偶热电阻功能选择, 热电阻测量短接 A12 与 RTB, 热电偶测量短接 A12 与 NTC			
J17	2.54mm 间距 1×3 直排针, 热电偶热电阻功能选择, 热电阻测量短接 A14 与 RTC, 热电偶测量短接 A14 与 TCB			
J20	2.54mm 间距 1×3 直排针,24 位 ADC 外部基准选择,选择热电阻测量基准 短接 REF 与 RE1,其他情况基准短接 REF 与 RE2。			
J6	5.08mm 间距 1×3 绿色端子, 热电阻测量接口, 外接三线制 PT100 温度传感器, RTDA 和 RTDB 接 PT100 两根短接线, RTDC 接 PT100 另一根线。			
J7	2.54mm 间距 1×2 直排针,蜂鸣器选择接口,短接 J7, PB6 即可控制蜂鸣器。			
J8	2.54mm 间距 1×2 直排针,复位按键选择接口,短接 J8,外部看门狗有效, 复位按键有效。			
J9	2.54mm 间距 1×2 直排针, LED0 选择接口, 短接 J9, PB7 即可控制 LED0。			
J10	2.54mm 间距 1×2 直排针, LED1 选择接口, 短接 J10, PB6 即可控制 LED1。			
J11	2.54mm 间距 1×2 直排针, IIC 外设 LM75 时钟选择接口, 短接 J11, PA11 即直连 LM75 时钟引脚。			
J13	2.54mm 间距 1×2 直排针, IIC 外设 LM75 数据选择接口, 短接 J13, PA12 即直连 LM75 数据引脚。			
J14	2.54mm 间距 1×3 直排针,多功能按键选择接口,独立按键短接 KEY 与 PA8, 按键加热短接 KEY 与 RES。			
J15, J26	2个 5.08mm 间距 1×2 绿色端子组合,称重传感器接口,VCC 端口接电桥激励电源正,GND 端口接电桥激励电源负,Br+和 Br-接电桥输出信号的正负端。			
J25	2.54mm 间距 2×3 直排针,校准电压选择接口,使用方法参见"3.6节 24 位			

AML166-Core

AML166-Core 开发套件

	ADC 校准 (demo-6)"
J27	2.54mm 间距 3×9U 型圆排母,可外拓 ZLG 带 MicroPort 接口的模块。

表 2.4 按键与 LED 描述

位号	功能说明
S 1	复位按键,短接J8之后,通过此按键可使主MCU芯片复位。
S2	多功能按键,短接 KEY 与 PA8,此按键为独立按键功能,短接 KEY 与 RES, 此按键为按键加热功能,按键可使得 R7 发热,提高 LM74B 芯片温度。
S4	BOOT0 按键,通过此按键可进行固件升级。
LED0, LED1	绿色 LED,短接对应的排针,IO 口可以控制 LED 亮灭。
LED3	红色 LED,供电电源指示灯。

3. 快速使用指南

AML166-Core 评估板出厂固件自带 6 个演示 demo,用户只需通过 USB 转 TTL 串口模 块将评估板的与 PC 相连,出厂固件使用的串口为 PA9 和 PA10 引脚,在 PC 上通过串口调 试助手发送对应的指令即可快速上手 6 个演示 demo, demo-1 是 PT100 热电阻温度测量演示 demo, demo-2 是热电偶温度测量演示 demo, demo-3 是压力电阻桥演示 demo, demo-4 是板载 IIC 外设 LM75B 温度测量演示 demo, demo-5 是板载按键和蜂鸣器演示 demo, demo-6 是 24 位 ADC 校准演示 demo。同时,板载固件开源,用户可以根据自己的需求对固件进行 二次开发。

3.1 PT100 热电阻温度测量(demo-1)

3.1.1 硬件连接

- ① 将三线制的 PT100 热电阻传感器接到 J6, RTDA 与 RTDB 直通, RTDC 为单独一端。
- ② 将 J20 排针的 REF1 和 REF 短接,将 J12 排针的 A12 和 RTB 短接,将 J17 排针的 A14 和 RTC 短接,将 J5 排针的 A13 与 RTA 短接。
- ③ 连接供电的 USB 电源,通过 USB 转 TTL 连接评估板与 PC 电脑

3.1.2 指令操作

打开 PC 上串口调试助手,波特率 115200,8 位数据,1 位停止位,无检验位,无流控制位。发送 demo-1\n,即可直接打印 PT100 所测得的温度,demo-1 演示效果如图 3.1 所示。如果需要回到主界面,发送 e\n。

ile SSCOM3.2 (作者:聂小猛(丁丁), 主页http://www	v.mcu51.com, Email: mc 💼 💷 💌
Start up successful! please select which demo you want to do:(eg:	多条字符串定义 串口资料
'demo-1\n')	HEX友法
1. PT100 temperature measure Demo	
 Inermocouple temperature measure Demo Res bridge measure Demo 	demo-1 3
4. LM75 temperature measure Demo	4
5. Key and Durrer Demo 6. Calibration Demo	5
Tem = 650.842°	6
Tem = 650 871°	7
Tem = 650.882°	9
	→ 自动循环发送, 间隔: 1000 ms
打开文件文件名	
串口号 COM8 💌 🔘 打开串口 都助	WWW. MCU51 .COM <u>隐藏</u>
波特率 115200 ▼ □ DTR □ BTS	欢迎使用专业串口调试工具SSCOM !
数据位 8 ▼ □ 定时发送 1 ms/次	作者: 县小福() 最新版本下裁地址·
停止位 1 ▼ □ HEX发送 ▼ 发送新行	http://www.mcu51.com/download/sscom.rar
检验位 None ▼ 字符串输入框: 发送	欢迎提出您的建议!
流控制 None ▼ demo-1	

图 3.1 demo-1 演示效果

AML166-Core 开发套件

3.2 热电偶温度测量(demo-2)

3.2.1 硬件连接

- ① 将热电偶传感器接到 J3, TC+接热电偶正端, TC-接热电偶负端。
- ② 将 J20 排针的 REF2 和 REF 短接,将 J12 排针的 A12 和 NTC 短接,将 J17 排针的 A14 和 TCB 短接,将 J5 排针的 A13 与 TCA 短接。
- ③ 连接供电的 USB 电源,通过 USB 转 TTL 连接评估板与 PC 电脑。

3.2.2 指令操作

打开 PC 上串口调试助手,波特率 115200,8 位数据,1 位停止位,无检验位,无流控制位。发送 demo-2\n,选择所使用的热电偶型号(评估板固件支持 J,K 和 T 型热电偶),假设所接热电偶型号为 K 型,再发送 2\n 即可直接打印热电偶所测得的温度,如图 3.2 所示。如果需要回到主界面,发送 e\n 即可。

Le SSCOM3.2 (作者:聂小猛(丁丁), 主页http://www	v.mcu51.com, Email: mc 💼 💷 💌
Start up successful! please select which demo you want to do:(eg:	多条字符串定义 ┃串口资料 ┃
'demo-1\n')	HEX发送
1. PT100 temperature measure. Demo	demo-1 1
2. Thermocouple temperature measure Demo	demo-2 2
3. Kes bridge measure Demo 4. LM75 temperature measure Demo	
5. Key and Buzzer Demo	
6. Calibration Demo Please select thermocouple type eg: '1\p'	
1. J	7
2. K 3 T	8
Tem = 0.000°	9
Tem = 0.000°	- 自动循环发送,间隔: 1000 ms
打开文件 文件名	_发送文件 保存窗口 清除窗口 □ ਮधx显示
串口号 COM8 💌 🔘 打开串口 都助	WWW. MCU51.COM _ 隐藏
波特案 115200 ▼ □ DTR □ RTS	欢迎使用专业串口调试工具SSCOM !
数据位 8 ▼ □ 完时发送 1 ms/次	作者:
信止位 1 ▼ Ⅲ X发送 ▼ 发送新行	Bx אוואע 44 ראר דאגע אין דאראיז אוואע 15 http://www.mcu51.com/download/sscom.rar
校验位 None ▼ 字符串输入框: 友送	欢迎提出您的建议!
流控制 None ▼ 2	

图 3.2 demo-2 演示效果

3.3 压力电阻桥测量(demo-3)

Demo-3 用于压力电阻桥的差分电压测量,所接传感器一般是电阻应变片,桥式电阻应 变片接到 J26 和 J15 端子,VCC 是激励源的正端,GND 是激励源的负端,Br+是电阻桥输出 信号的正端,Br-是电阻桥输出信号的负端。将 J20 排针的 REF1 和 REF 短接,打开 PC 上 串口调试助手,波特率 115200,8 位数据,1 位停止位,无检验位,无流控制位。发送 demo-3\n, 再发送对应的增益,即可打印桥式电阻应变片输出的差分电压,换算成对应的重量或者压力 需要在开源的代码里加入转换公式。

AML166-Core 开发套件

3.4 LM75B 温度测量(demo-4)

3.4.1 硬件连接

① 将 J11 排针和 J13 排针短接。

② 连接供电的 USB 电源,通过 USB 转 TTL 连接评估板与 PC 电脑。

3.4.2 指令操作

打开 PC 上串口调试助手,波特率 115200,8 位数据,1 位停止位,无检验位,无流控制位。发送 demo-4\n,即可直接 LM75B 所测得的温度,如图 3.3 所示。如果需要回到主界面,发送 e\n 即可。评估板上自带加热电路,短接 J14 排针的 KEY 与 RES,按下 S2 即可对 LM75B 进行加热。

▲ SSCOM3.2 (作者:聂小猛(丁丁), 主页http://www.	mcu51.com, Email: mc 💼 💷 🞫
 PT100 temperature measure Demo Thermocouple temperature measure Demo Res bridge measure Demo LM75 temperature measure Demo Calibration Demo Current temperature is 28.1° C Current temperature is 28.0° C 	 ▲ 多条字符串定义 串口资料 HEX 字符串 发送 □ demo=1 □ demo=2 2 2 3 e 4 demo=3 5 demo=4 6 7 1 0 8 9 1000 ms
<u>打开文件</u> 第口号 COM8 ▼ ● <u>打开串口</u> 帮助	<u>发送文件</u> 保存窗口 清除窗口 □ HEX显示 <i>WWW.MCU51.COM</i> 隐藏
波特率 115200 ▼ DTR RTS 数据位 8 ▼ 定时发送 1 ms/次 停止位 1 ▼ HEX发送 ✓ 发送新行 1 校验位 None ▼ 字符串输入框: 发送 5	AZEICH を11日口頃以上共SSCOM ! 作者: 聂小猛(丁丁) 最新版本下载地址: http://www.mcu51.com/download/sscom.rar 欢迎提出您的建议!
ww.mcu51.cor S:11 R:970 COM	8 已关闭 115200bps CTS=0 DSR=0 RL //

图 3.3 demo-4 演示效果

3.5 按键与蜂鸣器(demo-5)

Demo-5 用于按键和蜂鸣器测试,将 J7 排针短接,然后短接 J14 排针的 KEY 与 PA8, 打开 PC 上串口调试助手,波特率 115200,8 位数据,1 位停止位,无检验位,无流控制位。 发送 demo-5\n 即可,S2 按键按下蜂鸣器就会响起来。

3.6 24 位 ADC 校准(demo-6)

3.6.1 适用条件

Demo-6 用于 24 位 ADC 增益校准,出厂评估板已经经过校准,用户无需再去进行校准, demo-6 主要适用于二次开发,即使用者重新烧录了自己的固件,进行相关功能的开发,此 时可以采用 demo-6 进行校准以及查看当前校准系数。

3.6.2 硬件连接

① 将 J20 排针的 REF2 和 REF 短接,确保 J5, J12 和 J17 排针上无短路帽。

② 连接供电的 USB 电源,通过 USB 转 TTL 连接评估板与 PC 电脑。

3.6.3 指令操作

打开 PC 上串口调试助手,波特率 115200,8 位数据,1 位停止位,无检验位,无流控制位。

- ① 发送 demo-6\n,发送 1\n 即进入校准模式,发送 2\n 查看当前校准系数。
- ② 发送 1\n 之后,进入校准模式,需要测量校准电压点 cali0 与 cali1 的电压(推荐采用 5 位半精度以上的万用表测量), cali0 接正端, cali1 接负端,测量完成之后根据提示的格式输入至字符串框内发送 cali0-cali1 的电压。
- ③ 接着测量校准电压点 cali1 与 cali2 的电压,与第②步骤类似,测量完成之后根据提示的格式输入至字符串框内发送 cali1-cali2 的电压。
- ④ 输入的测量电压发送完成之后,根据打印的提示信息把 J21 的 A12 和 cali0 短接, A13 和 cali1 短接,确认连接无误,发送 Y\n。
- ⑤ 然后根据打印的提示信息把 J21 的 A12 和 cali2 短接, A13 和 cali1 短接, 确认连接 无误,发送 Y\n,即可完成校准操作。最后效果如图 3.4 所示。

ル SSCOM3.2 (作者:聂小猛(丁丁), 主页http://www	.mcu	51.com, Email: mc 🗖 🔳	×
Please config VO measure(A12-caliO A13-cali1) Are you do it? (Intrut 'Y\n' to ensure you	*	多条字符串定义 串口资料	
have do it)	}	exx 字符串	发送
Y	ſ	demo-1	1
Please config V1 measure(A12-cali2 A13-cail1)	ſ	demo-2	2
Are you do it? (Intput 'Y\n' to ensure you	ſ	2	3
have do it) Y	ſ	e	4
•	I	demo-3	5
PAG = 1 adjust success.		demo-4	6
Y = 1.0059043 * X + 0.0483		demo-5	7
		demo-6	- 8
PAG = 2 adjust success. The PGA 2 formula is			9
Y = 1.0534179 * X + 0.0500		V0:3.153	- 10
		V1:30.769	11
The PGA 4 formula is :		I	12
Y = 1.0538373 * X + 0.0294			- 14
PAG = 8 adjust success	ľ	-	- 15
The PGA 8 formula is :	l li		16
Y = 1.0539001 * X + 0.0172	Í	-	17
PAG = 16 adjust success.	Шî	-	18
The PGA 16 formula is :	Í		19
Y = 1.0094967 * X + 0.0177			20
PAG = 32 adjust success.	- 1		21
The PGA 32 formula is :	= [22
I = I.0044655 * X + 0.0110	ſ		23
PAG = 64 adjust success.			24
The PGA 64 formula is : Y = 1 0519453 * Y + 0 0169	- I		25
1 - 1.0010400 * 1 + 0.0100	ſ		26
Finish ADC1 calibration! Exit ADC1 adjust mode	-	□ 自动循环发送, 间隔: 1000	ms
打开文件文件名	发送	★文件 保存窗口 清除窗口 □	HEX显示
串口号 COM8 💌 🛞 <u>关闭串口</u> 帮助	l	NWW. <mark>MCU51</mark> .COM	隐藏
波特案 115200 ▼ □ DTB □ BTS	欢迎(使用专业串口调试工具SSCOM!	
数据位 8 ▼ □ 完时发送 1 ms/次	作者:		
	頭新聞	波本下動地計: ////////////////////////////////////	
	nttp: 劝训	//www.mcubi.com/download/ssco 県出你的建议!	m.rar
11 11 11 11 11 11 11 11 11 11 11 11 11	7A P P 4	IF LEG WALL IN # 1/X +	
[流控制]None ▼ 1			
ww.mcu51.cor S:87 R:3657 CON	18E¥	7开 115200bps CTS=0 DSR=	0 RĽ //

图 3.3 demo-4 演示效果

4. 免责声明

本着为用户提供更好服务的原则,广州致远微电子有限公司(下称"致远微电子")在 本手册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时 效性,致远微电子不能完全保证该文档在任何时段的时效性与适用性。致远微电子有权在没 有通知的情况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息, 请尊敬的用户定时访问官方网站或者与致远微电子工作人员联系。感谢您的包容与支持!

